Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
Physical interactions can often help reveal information that is not readily apparent. For example, we may tug at a table leg to evaluate whether it is built well, or turn a water bottle upside down to check that it is watertight. We propose to train robots to acquire such interactive behaviors automatically, for the purpose of evaluating the result of an attempted robotic skill execution. These evaluations in turn serve as "interactive reward functions" (IRFs) for training reinforcement learning policies to perform the target skill, such as screwing the table leg tightly. In addition, even after task policies are fully trained, IRFs can serve as verification mechanisms that improve online task execution. For any given task, our IRFs can be conveniently trained using only examples of successful outcomes, and no further specification is needed to train the task policy thereafter. In our evaluations on door locking and weighted block stacking in simulation, and screw tightening on a real robot, IRFs enable large performance improvements, even outperforming baselines with access to demonstrations or carefully engineered rewards. Project website: https://sites.google.com/view/lirf-corl-2022/
translated by 谷歌翻译
We present a novel approach to improve the performance of learning-based speech dereverberation using accurate synthetic datasets. Our approach is designed to recover the reverb-free signal from a reverberant speech signal. We show that accurately simulating the low-frequency components of Room Impulse Responses (RIRs) is important to achieving good dereverberation. We use the GWA dataset that consists of synthetic RIRs generated in a hybrid fashion: an accurate wave-based solver is used to simulate the lower frequencies and geometric ray tracing methods simulate the higher frequencies. We demonstrate that speech dereverberation models trained on hybrid synthetic RIRs outperform models trained on RIRs generated by prior geometric ray tracing methods on four real-world RIR datasets.
translated by 谷歌翻译
Named Entity Recognition (NER) involves the identification and classification of named entities in unstructured text into predefined classes. NER in languages with limited resources, like French, is still an open problem due to the lack of large, robust, labelled datasets. In this paper, we propose a transformer-based NER approach for French using adversarial adaptation to similar domain or general corpora for improved feature extraction and better generalization. We evaluate our approach on three labelled datasets and show that our adaptation framework outperforms the corresponding non-adaptive models for various combinations of transformer models, source datasets and target corpora.
translated by 谷歌翻译
Social networking sites, blogs, and online articles are instant sources of news for internet users globally. However, in the absence of strict regulations mandating the genuineness of every text on social media, it is probable that some of these texts are fake news or rumours. Their deceptive nature and ability to propagate instantly can have an adverse effect on society. This necessitates the need for more effective detection of fake news and rumours on the web. In this work, we annotate four fake news detection and rumour detection datasets with their emotion class labels using transfer learning. We show the correlation between the legitimacy of a text with its intrinsic emotion for fake news and rumour detection, and prove that even within the same emotion class, fake and real news are often represented differently, which can be used for improved feature extraction. Based on this, we propose a multi-task framework for fake news and rumour detection, predicting both the emotion and legitimacy of the text. We train a variety of deep learning models in single-task and multi-task settings for a more comprehensive comparison. We further analyze the performance of our multi-task approach for fake news detection in cross-domain settings to verify its efficacy for better generalization across datasets, and to verify that emotions act as a domain-independent feature. Experimental results verify that our multi-task models consistently outperform their single-task counterparts in terms of accuracy, precision, recall, and F1 score, both for in-domain and cross-domain settings. We also qualitatively analyze the difference in performance in single-task and multi-task learning models.
translated by 谷歌翻译
In a spoofing attack, an attacker impersonates a legitimate user to access or tamper with data intended for or produced by the legitimate user. In wireless communication systems, these attacks may be detected by relying on features of the channel and transmitter radios. In this context, a popular approach is to exploit the dependence of the received signal strength (RSS) at multiple receivers or access points with respect to the spatial location of the transmitter. Existing schemes rely on long-term estimates, which makes it difficult to distinguish spoofing from movement of a legitimate user. This limitation is here addressed by means of a deep neural network that implicitly learns the distribution of pairs of short-term RSS vector estimates. The adopted network architecture imposes the invariance to permutations of the input (commutativity) that the decision problem exhibits. The merits of the proposed algorithm are corroborated on a data set that we collected.
translated by 谷歌翻译
We propose to characterize and improve the performance of blind room impulse response (RIR) estimation systems in the context of a downstream application scenario, far-field automatic speech recognition (ASR). We first draw the connection between improved RIR estimation and improved ASR performance, as a means of evaluating neural RIR estimators. We then propose a GAN-based architecture that encodes RIR features from reverberant speech and constructs an RIR from the encoded features, and uses a novel energy decay relief loss to optimize for capturing energy-based properties of the input reverberant speech. We show that our model outperforms the state-of-the-art baselines on acoustic benchmarks (by 72% on the energy decay relief and 22% on an early-reflection energy metric), as well as in an ASR evaluation task (by 6.9% in word error rate).
translated by 谷歌翻译
小型模块化反应堆的概念改变了解决未来能源危机的前景。考虑到其较低的投资要求,模块化,设计简单性和增强的安全功能,这种新的反应堆技术非常有希望。人工智能驱动的多尺度建模(中子,热液压,燃料性能等)在小型模块化反应堆的研究中纳入了数字双胞胎和相关的不确定性。在这项工作中,进行了一项关于耐亡燃料的多尺度建模的全面研究。探索了这些燃料在轻水的小型模块化反应堆中的应用。本章还重点介绍了机器学习和人工智能在设计优化,控制和监视小型模块反应器中的应用。最后,简要评估了有关人工智能在高燃烧复合事故耐受燃料的发展中的研究差距。还讨论了实现这些差距的必要行动。
translated by 谷歌翻译
以前在外围防御游戏中的研究主要集中在完全可观察到的环境上,在该环境中,所有玩家都知道真正的玩家状态。但是,这对于实际实施而言是不现实的,因为捍卫者可能必须感知入侵者并估计其国家。在这项工作中,我们在照片真实的模拟器和现实世界中研究外围防御游戏,要求捍卫者从视力中估算入侵者状态。我们通过域随机化训练一个基于机器学习的系统,用于入侵者姿势检测,该系统汇总了多个视图,以减少状态估计错误并适应防御策略来解决此问题。我们新介绍性能指标来评估基于视觉的外围防御。通过广泛的实验,我们表明我们的方法改善了国家的估计,最终在两场比赛中的VS-1-Intruder游戏和2-Fefenders-VS-1-Intruder游戏中最终进行了外围防御性能。
translated by 谷歌翻译
我们解决了在室内环境中对于具有有限感应功能和有效载荷/功率限制的微型航空车的高效3-D勘探问题。我们开发了一个室内探索框架,该框架利用学习来预测看不见的区域的占用,提取语义特征,样本观点,以预测不同探索目标的信息收益以及计划的信息轨迹,以实现安全和智能的探索。在模拟和实际环境中进行的广泛实验表明,就结构化室内环境中的总路径长度而言,所提出的方法的表现优于最先进的勘探框架,并且在勘探过程中的成功率更高。
translated by 谷歌翻译